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On some statistical properties of a stationary
Gaussian process in the presence

of measurement errors

Kuntal Bera1, M. Z. Anis2

Abstract

Process outputs of many production processes like chemical, food processing and pharma-
ceutical industry follow a stationary Gaussian process. Some amount of measurement error
always present in the measured data due to inaccurate measuring processes. Throughout
this paper, we discuss some statistical properties like the mean and variance of a stationary
Gaussian process when observed data are affected by measurement errors. As a special case,
we discuss a stationary autoregressive process of order one with Gaussian white noise where
measurement error follows an independent Gaussian distribution.
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1. Introduction

Measurement error is a general problem while collecting data and hence the usage of
such data may lead to improper inference. The variable of interest, say X , cannot be mea-
sured accurately in the presence of measurement error. Koutsoyiannis (1977) presents inter-
esting examples of measurement errors in economics. The presence of measurement error
has a profound influence in almost every area dealing with the measurement of the sample.
Maleki et al. (2017) pointed out that in spite of refined and sophisticated measuring devices,
real-life data are contaminated with measurement errors. Hence, these measurement errors
need to be taken into account while monitoring items. There is a large body of literature
dealing with the effect of measurement error in many areas including statistical process
control (SPC), economics, medical studies, environmental studies, agricultural studies and
others. See, for example, Carroll (1998), Linna and Woodall (2001), Noor-ul Amin et al.
(2022), Schennach (2016), Blackwell et al. (2017), Abay et al. (2023) and the references
therein. Wu (2011) cautioned that if measurement error is ignored, it may lead to unreliable
decisions for the process under study. Attention should first be paid to the measurement sys-
tem to ascertain if the variability significantly increases due to the presence of measurement
error in the data.

Autocorrelation is an inherent property of many processes, see, for example, Shumway
and Stoffer (2017). The interval between process observations is decreasing due to the
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rampant use of online data acquisition systems, leading to positive autocorrelation as noted
by Runger and Willemain (1995). Such trends are more pronounced in the process and
chemical industries, the practice of measuring every part produced induces positive auto-
correlation even in discrete parts measurement. Statistical tests (e.g. the Durbin-Watson
test and the Bartlett test) can be used to detect the presence of first-order and higher-order
autocorrelation. Zhang (1998) has estimated the variance and expected value of the sample
mean and the sample variance for a stationary Gaussian process.

In many industrial production processes it is found that quite a few of the quality char-
acteristics of output products follow stationary Gaussian process, see Box et al. (2015).
To control the production process economically, knowledge of the mean and variance of
the respective quality characteristics is necessary. For instance, the knowledge of the mean
and variance of a process is required for many statistical process control techniques like
estimation of control limits, estimation of process capability, estimation of percentage of
conforming quality, etc.

In this work, we discuss some statistical properties of such autocorrelated processes
when the observed data is contaminated with measurement error and thereby extend the
work of Zhang (1998). The paper is organized as follows. In Section 2, we discuss the
statistical properties of a stationary Gaussian process. These results are extended to account
for measurement errors in Section 3. The impact of measurement errors in estimating the
mean and variance of a stationary AR(1) process is shown graphically as a special case.
Some simulation studies are reported and an industrial example is reported in Section 4. An
industrial application is mentioned in Section 5 and Section 6 concludes the paper.

2. Statistical Properties of a Stationary Gaussian Process

Let {Xt , t ∈Z} be a discrete-time stationary Gaussian process. A time series {Xt} is said
to be a stationary process if Var(Xt) < ∞, expectation E(Xt) is independent of time t and
auto-covariance function Cov(Xt+h,Xt) depends only on difference between the time points;
i.e., h and is independent of t. For a stationary time series Xt , let

E(Xt) = µX

and
Cov(Xt+h,Xt) = γX (h).

A time series {Xt} is said to be a Gaussian process if the joint distribution of any finite
n number of random variables {X1,X2,X3, . . . ,Xn} from the process follows a multivariate
normal distribution; see Kotz et al. (2019) for details about properties of multivariate nor-
mal distribution. A process that is stationary and Gaussian simultaneously is said to be
a stationary Gaussian process, see Brockwell and Davis (2002) for details. A stationary
Gaussian process is also strictly stationary. A time series is said to be strictly stationary if
the probabilistic behaviour of every finite collection of values {Xt1 ,Xt2 , . . . ,Xtn} is identical
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with the time shifted values {Xt1+h,Xt2+h, . . . ,Xtn+h}.

Let {X1,X2, . . . ,Xn} be a random sample of n consecutive observations from a stationary
Gaussian process. Then, the sample mean and the sample variance of the process are,

respectively, given by X̄ =
∑

n
i=1 Xi

n and S2
X =

[
∑

n
i=1(Xi−X̄)2

]
n−1 . Zhang (1998) found the expected

value and variance of X̄ and S2
X . We shall stick to the same notation as used by Zhang (1998);

but for completeness, we shall define the functions that will be used subsequently.

Let

ρi = ρX (i) =
γX (i)
γX (0)

for i = 1,2,3, . . . ,n be the autocorrelation of Xt at lag i. Define,

f (n,ρi) = 1− 2
n(n−1)

n−1

∑
i=1

(n− i)ρi, (1)

F(n,ρi) = n+2
n−1

∑
i=1

(n− i)ρi
2 +

1
n2

[
n+2

n−1

∑
i=1

(n− i)ρi

]2

− 2
n

n−1

∑
i=0

n−i

∑
j=0

(n− i− j)ρiρ j (2)

and

g(n,ρi) = 1+
2
n

n−1

∑
i=1

(n− i)ρi. (3)

Observe that when the process {Xt} is identically and independently normally dis-
tributed, then ρi = 0 for i ≥ 1. In this case f (n,ρi) = 1, g(n,ρi) = 1 and F(n,ρi) = (n−1).

Since {Xt} is a Gaussian process, therefore X̄ ∼ N
(

µX ,
σ2

X g(n,ρi)
n

)
. Hence, the r − th

order central moment of X̄ is

E(X̄ −µX )
r
=

0 when r is an odd integer

1.3.5 . . .(2k−1)
[

σ2
X g(n,ρi)

n

]2k
when r = 2k for k = 1,2,3, . . . .

(4)

Here, we discuss the particular case of an AR(1) process. AR(1) process is very popular
and often occurs in many chemical and process industries for modeling autocorrelation
structures. Note that the AR(1) process is a special case of stationary Gaussian process. An
AR(1) process with mean µ is defined as

Xt −µ = φ (Xt−1 −µ)+at , |φ |< 1. (5)

When at is a Gaussian white noise, then {Xt} will be a stationary Gaussian process.
Suppose at ∼ IIDN(0,σ2

a ). For an AR(1) process defined by equation (5), ρi = φ i. So, the
expected value and variance of the sample mean and the sample variance, in this case, is

E(X̄) = µX ,
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Var (X̄) =
σ2

X
n

g(n,φ),

E
(
S2

X
)
= σ

2
X f (n,φ),

and

Var
(
S2

X
)
=

2σ4
X

(n−1)2 F(n,φ)

where

σ
2
X =

σ2
a

(1−φ 2)
, (6)

f (n,φ) = 1− 2
n(n−1)

φ [n−1−nφ +φ n]

(1−φ)2 , (7)

F(n,φ) = n+2
n−1

∑
i=1

(n− i)φ
2i +

1
n2

[
n+2

n−1

∑
i=1

(n− i)φ i

]2

− 2
n

n−1

∑
i=0

n−i

∑
j=0

(n− i− j)φ
i+ j, (8)

and

g(n,φ) = 1+
2
n

φ [n−1−nφ +φ n]

(1−φ)2 . (9)

Thus, the sample mean is an unbiased estimator of the population mean while the sample
variance is a biased estimator of population variance. The variance of the sample mean can
be expressed as

Var(X̄) =
σ2

a g(n,φ)
n(1−φ 2)

= σ
2
a R1(n,φ)

where

R1(n,φ) =
g(n,φ)

n(1−φ 2)
.

The bias and mean square error of the sample variance are given by

Bias(S2
X ) = σ

2
X [ f (n,φ)−1]

=
σ2

a [ f (n,φ)−1]
(1−φ 2)

= σ
2
a R2(n,φ)
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MSE(S2
X ) =Var

(
S2

X
)
+
{

Bias(S2
X )
}2

=
2σ4

a

(1−φ 2)2

[
F(n,φ)
(n−1)2 +

{ f (n,φ)−1}2

2

]
= σ

4
a R3(n,φ)

where

R2(n,φ) =
[ f (n,φ)−1]
(1−φ 2)

,

R3(n,φ) =
2

(1−φ 2)2

[
F(n,φ)
(n−1)2 +

{ f (n,φ)−1}2

2

]
.

Similarly, the r−th order central moment of X̄ in this special case will be,

E(X̄ −µX )
r
=

0 when r is an odd integer

1.3.5 . . .(2k−1)
[

σ2
X g(n,φ)

n

]2k
when r = 2k for k = 1,2,3, . . . .

(10)

We graphically present R1(n,φ), R2(n,φ) and R3(n,φ) to show the effect of autocorre-
lation and the sample size on estimating mean and variance when process observations are
autocorrelated. Note that when sample observations are independent, then φ = 0 and in this
case R1(n,φ), R2(n,φ), R3(n,φ) will become only the function of the sample size n.

From Figure 1 it is clear that the variance of the sample mean increases as the autocor-
relation level increases. For small sample size (n < 50), this variance is significantly large
when autocorrelation is high (φ ≥ 0.50). The variance of the sample mean decreases with
the increase of the sample size as expected. From the graph of R2(n,φ) in Figure 2 we notice
that the sample variance is a biased estimate of population variance in the presence of auto-
correlation. Note that sample variance is an unbiased estimate of population variance when
sample observations are independent. Sample variance is underestimated in the presence
of autocorrelation. The bias of the sample variance is significantly large when the sample
size is small and autocorrelation is high. From the graph of R3(n,φ) in Figure 3 we notice
that the MSE of the sample variance increases as autocorrelation increases. This MSE is
significantly large when the sample size is small. This happens because uncertainty within
the sample increases due to an increase of autocorrelation and as a result, in such cases,
a sample of small size cannot properly estimate the mean and variance of the population.
Therefore, to avoid estimation error due to autocorrelation, a relatively large sample size is
required for estimating mean and variance.
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Figure 3: Graph of R3(n,φ) corresponding to different values of φ .

3. Statistical Properties of a Stationary Gaussian Process in the Pres-
ence of Measurement Errors

In practical situations, true values of process outputs are often unobservable as they
are contaminated by measurement errors. Instead of the true process {Xt}, we observe the
process {Yt}, where Yt is defined by

Yt = Xt +Et . (11)

Here, Et is a random measurement error variable. Assume that Et ∼ N(0,σ2
E); Xt and

Et are stochastically independent. Let {Y1,Y2, . . . ,Yn} be a random sample of size n from
the observable process {Yt}. Thus, the sample mean and the sample variance, using the

observable data, are given by Ȳ =
∑

n
i=1 Yi
n and S2

Y =
[∑n

i=1(Yi−Ȳ )2]
n−1 respectively.

3.1. Statistical Analysis of Sample Mean

It is easy to see that

E(Ȳ ) = µX ; (12)

and

Var (Ȳ ) =
σ2

X
n

g(n,ρi)+
σ2

E
n
. (13)
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As X̄ ∼ N
(

µX ,
σ2

X g(n,ρi)
n

)
; Ē ∼ N

(
0, σ2

E
n

)
and Ȳ is the sum of two normal variables,

it follows that Ȳ ∼ N
(

µX ,
[σ2

X g(n,ρi)+σ2
E ]

n

)
. Hence, the r−th order central moment of Ȳ is

given by

E(Ȳ −µX )
r
=

0 when r is an odd integer

1.3.5 . . .(2k−1)
[

σ2
X g(n,ρi)+σ2

E
n

]2k
when r = 2k for k = 1,2,3, . . . .

(14)

In the particular case of an AR(1) process defined by equation (5), we have

Var (Ȳ ) =
σ2

X
n

g(n,φ)+
σ2

E
n

=
σ2

X
n

[
g(n,φ)+(1−φ

2)τa
2]

= σ
2
a Re

1(n,φ ,τa)

where

Re
1(n,φ ,τa) =

[
g(n,φ)+(1−φ 2)τa

2
]

n(1−φ 2)
. (15)

Here, σ2
a is the variance of Gaussian white noise at and Re

1(n,φ ,τa) is defined by the
equation (15). Here, τa is the ratio between the standard deviation of measurement error Et

and the standard deviation of the Gaussian white noise at and is defined by

τa =
σE

σa
. (16)

To see the combined effect of measurement error and autocorrelation on the estimation
of mean, we graphically analyze the function Re

1(n,φ ,τa). Note the Re
1(n,φ ,τa) is a function

of autocorrelation parameter φ , degree of error contamination τa and the sample size n. In
case sample observations are free of measurement error then τa = 0 and when independent
then φ = 0.

It is clear from Figure 4 and Figure 5 that the variance of the sample mean has some
increment due to the presence of measurement error. But this increment is not significant.
Hence, measurement error does not affect seriously the sample mean.

3.2. Statistical Analysis of Sample Variance

It is easy to see that

S2
Y = S2

X +
2

n−1

n

∑
i=1

(Xi − X̄)(Ei − Ē)+S2
E ;
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Figure 5:

and on taking expectations we get

E(S2
Y ) = σ

2
X f (n,ρi)+σ

2
E ; (17)

If {Xt} is an AR(1) process defined by equation (5), then

E(S2
Y ) = σ

2
X
[

f (n,φ)+(1−φ
2)τ2

a
]
.

In this case, sample variance is a biased estimator of population variance. The bias of
the estimator with respect to the true process variance is given by

Bias(S2
Y ) = E

(
S2

Y
)
−σ

2
X

= σ
2
X
[
{ f (n,φ)−1}+(1−φ

2)τ2
a
]

= σ
2
a Re

2(n,φ ,τa)
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where

Re
2(n,φ ,τa) =

[
f (n,φ)−1+(1−φ 2)τa

2
]

(1−φ 2)
. (18)
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We have observed from Figure 2 of Section 2 that the sample variance is underestimated
in the presence of autocorrelation. Also, we have noticed that the sample variance is unbi-
ased when the sample is independent. From Figure 6(a) we notice that the sample variance
is overestimated in the presence of the measurement error when sample observations are
independent. However, a mixed effect is observed in the presence of both autocorrelation
and measurement error. Autocorrelation tries to underestimate the sample variance while
measurement error attempts to overestimate it. As the effect of underestimation is large
when autocorrelation is present and the sample size is small, a relatively small value of
Re

2(n,φ ,τa) is visible for a small sample size.
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The expression for the variance of the sample variance is given in the equation (19).
Detailed calculation is provided in the Appendix.

Var(S2
Y ) =

2σ4
X

(n−1)2

{
F(n,ρi)+(n−1)

σ4
E

σ4
X
+2(n−1) f (n,ρi)

σ2
E

σ2
X

}
. (19)

Now, if {Xt} is an AR(1) process defined by equation (5), then we can write the expres-
sion (19) as:

Var(S2
Y ) =

2σ4
X

(n−1)2

{
F(n,φ)+(n−1)(1−φ

2)2
τ

4
a +2(n−1)(1−φ

2)τ2
a f (n,φ)

}
.

The mean square error of the estimator of the sample variance about the true process
variance, in this case, is

MSE(S2
Y ) =

2σ4
X

(n−1)

{[
F(n,φ)+(n−1)(1−φ 2)2τ4

a +2(n−1)(1−φ 2)τ2
a f (n,φ)

]
(n−1)

+
(n−1)[{ f (n,φ)−1}+(1−φ 2)τa

2]2

2

}
= σ

4
a Re

3(n,φ ,τa) (20)

where

Re
3(n,φ ,τa) =

2
(1−φ 2)2

{[
F(n,φ)+(n−1)(1−φ 2)2τ4

a +2(n−1)(1−φ 2)τ2
a f (n,φ)

]
(n−1)2

+
[{ f (n,φ)−1}+(1−φ 2)τa

2]2

2

}
. (21)

The different behaviour of MSE(S2
Y ) for different values of φ , τa and n is observable

from Figure 8 and Figure 9. We can see from these figures that as measurement error
increases, the MSE value also increases. But for highly autocorrelated data (φ = 0.90), as
can be seen from Figure 9(b), the value of MSE relatively decreases as measurement error
increases.



12 K. Bera, M. Z. Anis: On some statistical properties of a stationary ...

0 50 100 150 200 250 300

n

-0.2

0

0.2

0.4

0.6

0.8

1

1.2
R

3e

=0.00

a
=0.00

a
=0.15

a
=0.30

a
=0.45

a
=0.60

a
=0.75

(a) Graph of Re
3(n,φ ,τa) corresponding to different

values of τa for φ = 0.00.

0 50 100 150 200 250 300

n

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

R
3e

=0.30

a
=0.00

a
=0.15

a
=0.30

a
=0.45

a
=0.60

a
=0.75

(b) Graph of Re
3(n,φ ,τa) corresponding to different

values of τa for φ = 0.30.

Figure 8:

0 50 100 150 200 250 300

n

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

R
3e

=0.60

a
=0.00

a
=0.15

a
=0.30

a
=0.45

a
=0.60

a
=0.75

(a) Graph of Re
3(n,φ ,τa) corresponding to different

values of τa for φ = 0.60.

0 50 100 150 200 250 300

n

2

4

6

8

10

12

14

16

18

20
R

3e
=0.90

a
=0.00

a
=0.15

a
=0.30

a
=0.45

a
=0.60

a
=0.75

(b) Graph of Re
3(n,φ ,τa) corresponding to different

values of τa for φ = 0.90.

Figure 9:

4. Simulation

We carried out a simulation exercise to study the behavior of the mean and variance
of the sample mean and the sample variance. We simulate 5000 random samples of size
50(25)200 respectively from each of an IID normal process, a stationary AR(1) process and
a stationary AR(1) process with random measurement errors separately. In each of these
cases, we compare the sample estimated value of the mean and variance of the estimators
with the corresponding theoretical values. Here, hat (ˆ) indicates the sample estimated
value.

4.1. Case of an IID normal Process

Here, we simulate a model of iid random normal variables Xt ∼ N(µ,σ2) where µ = 5
and σ2 = 4.
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Table 1: Results based on iid normal model Xt .
n E(X̄) Ê(X̄) Var(X̄) ˆVar(X̄) E(S2

X ) Ê(S2
X ) Var(S2

X ) ˆVar(S2
X )

50 5 5.0068 0.0800 0.0778 4 3.9759 0.6531 0.6700
75 5 5.0058 0.0533 0.0545 4 3.9784 0.4324 0.4337

100 5 5.0056 0.0400 0.0404 4 3.9824 0.3232 0.3235
125 5 5.0045 0.0320 0.0317 4 3.9865 0.2581 0.2580
150 5 5.0038 0.0267 0.0264 4 3.9898 0.2148 0.2145
175 5 4.9967 0.0229 0.0227 4 4.0015 0.1839 0.1833
200 5 4.9968 0.0200 0.0201 4 4.0008 0.1608 0.1598

4.2. Case of a stationary AR(1) process

Here, we simulate a model from a stationary AR(1) model defined by equation (5) where
µ = 5, φ = 0.5 and white noise at ∼ N(0,1).

Table 2: Results based on an AR(1) model Xt .

n E(X̄) Ê(X̄) Var(X̄) ˆVar(X̄) E(S2
X ) Ê(S2

X ) Var(S2
X ) ˆVar(S2

X )

50 5 4.9981 0.0779 0.0758 1.2811 1.2729 0.1233 0.1072
75 5 4.9980 0.0524 0.0510 1.2983 1.2939 0.0812 0.0746

100 5 4.9989 0.0395 0.0390 1.3069 1.3038 0.0605 0.0575
125 5 4.9992 0.0317 0.0313 1.3122 1.3116 0.0482 0.0461
150 5 4.9995 0.0264 0.0261 1.3157 1.3139 0.0400 0.0386
175 5 4.9997 0.0227 0.0225 1.3182 1.3163 0.0343 0.0330
200 5 4.9997 0.0199 0.0197 1.3201 1.3201 0.0299 0.0294

4.3. Case of an AR(1) process in the presence of measurement errors

Here, we simulate a stationary AR(1) process in the presence of measurement errors.
The model is defined by equation (11). In this model Xt is same as defined in the previous
cases and Et ∼ iid N(0,σ2

E) where σ2
E = 4.

Table 3: Results based on an AR(1) model in the presence of measurement error, Yt .

n E(Ȳ ) Ê(Ȳ ) Var(Ȳ ) ˆVar(Ȳ ) E(S2
Y ) Ê(S2

Y ) Var(S2
Y ) ˆVar(S2

Y )

50 5 4.9990 0.1579 0.1545 5.2811 5.2856 1.1947 1.1494
75 5 4.9999 0.1057 0.1039 5.2983 5.2996 0.7943 0.7836

100 5 5.0001 0.0795 0.0782 5.3069 5.2945 0.5949 0.5851
125 5 4.9986 0.0637 0.0630 5.3122 5.3116 0.4756 0.4718
150 5 5.0020 0.0531 0.0526 5.3157 5.2947 0.3961 0.3938
175 5 5.0027 0.0455 0.0452 5.3182 5.3093 0.3394 0.3367
200 5 5.0017 0.0399 0.0395 5.3201 5.3159 0.2969 0.2944
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5. An industrial application

As an application, we will discuss the case of estimation of the control limits of the
mean chart in statistical process monitoring. Let, the true process {Xt} follow a stationary
Gaussian process and the observable process {Yt} modeled by equation (11). Then, the
upper and lower control limit for the process sample mean based on the observable sample
is given by,

UCL/LCL = µ ±K
√

Var (Ȳ ) (22)

where K> 0 is a real positive constant, often taken as K= 3 and Var (Ȳ ) is given by equation
(13). In particular, when the process is an AR(1) process

UCL/LCL = µ ±Kσa

√
Re

1 (n,φ ,τa) (23)

where Re
1 (n,φ ,τa) is given by equation (15). As measurement errors increase, the value of

Re
1 (n,φ ,τa) also increases, widening the control limits. The probability P of detecting the

mean shift from in-control mean µ0 to out-of-control mean µ1 is equal to

P = Φ

(
−K −δ/

√
Re

1 (n,φ ,τa)

)
+Φ

(
−K +δ/

√
Re

1 (n,φ ,τa)

)
(24)

and the average run length (ARL) of the control chart is equal to

ARL = 1/P (25)

where δ = |(µ0 − µ1)/σa| measures the mean shift. From Figure 4 and Figure 5 it can
be noticed that as autocorrelation and measurement error increases, Re

1 (n,φ ,τa) increases.
As a result, the power of the control chart decreases and the ARL increases. It can be
visualized from Figure 10. Therefore, the performance of the control chart decreases in
the presence of both autocorrelation and measurement errors. Some techniques are used to
reduce the autocorrelation and measurement error. For example, serial autocorrelation can
be reduced by using the s-skip strategy and measurement error can be reduced by taking
several measures (m ≥ 1) of each observed item or by improving the gauge performance,
see, for example, Costa and Castagliola (2011), Shongwe et al. (2021), Shongwe et al.
(2019), Shongwe and Malela-Majika (2021), Garza-Venegas et al. (2018).

6. Conclusions

Many industrial process data are autocorrelated and at the same time, the existence of
measurement errors due to inadequate measuring devices is common. To estimate some
inferential results based on the collected sample, sometimes the mean and variance of the
sample are required to be estimated. Hence, statistical properties of the sample mean and
the sample variance are required to ascertain how reliable the estimated values are.

Our discussion in Section 2 indicates that the variance of the sample mean and the
sample variance increases as autocorrelation increases. Also, the sample variance is biased
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Figure 10: The effect of autocorrelation and measurement error on the ARL of the mean
control chart, for K = 3 and n = 5.

and underestimated in the presence of autocorrelation. It has been shown that the variance
of the sample mean and the sample variance is significantly large when autocorrelation is
high and the sample size is small. Therefore, a relatively large sample size is recommended
for estimating mean and variance depending on the level of autocorrelation.

Similarly, our analysis in Section 3 shows that the combined effect of autocorrelation
and measurement error is found in estimating mean and variance for autocorrelated sam-
ples contaminated by measurement errors. Measurement error increases the variance of the
sample variance. Sample variance is underestimated in the presence of autocorrelation and
overestimated in the presence of measurement error. Therefore, one should be very careful
when taking measurements and measuring devices should also be good enough to provide
adequate confidence. In Section 4 we compare theoretical values of mean and variance of
the estimator of the sample mean and the sample variance with the sample estimated value
on the basis of simulated data. These results show that the theoretical values based on our
obtained results and the estimated sample values are reasonably close. Here, we have con-
sidered a particular case of a stationary Gaussian process, namely an AR(1) process. But
there are more stationary Gaussian processes other than the AR(1) process. Also, in this
paper, we have assumed that the measurement error follows an independent Gaussian distri-
bution but there are some situations where the measurement error does not follow Gaussian
distribution. These situations can be considered in future research.
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Appendix

Derivation of V
(
S2

Y
)

Here, the observable process is {Yt} where Yt =Xt +Et , Et ∼ IID N(0,σ2
E). Sample variance

is,

S2
Y =

1
(n−1)

n

∑
i=1

(Yi − Ȳ )2 (26)

= S2
X +

2
(n−1)

n

∑
i=1

(Xi − X̄)(Ei − Ē)+S2
E

where,

S2
E =

1
n−1

n

∑
i=1

(Ei − Ē)2, Ē =
1
n

n

∑
i=1

Ei.

Therefore,

Var(S2
Y ) =Var(S2

X )+
4

(n−1)2 Var

(
n

∑
i=1

(Xi − X̄)(Ei − Ē)

)
+Var(S2

E). (27)

Note that other covariance terms in Equation (27) will become zero as Xt , Et are indepen-
dent. From Zhang (1998) we get,

Var(S2
X ) =

2σ4
X

(n−1)2 F(n,φ). (28)

Also, we have,

Var(S2
E) =

2σ4
E

(n−1)
. (29)
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Now,

Var

(
n

∑
i=1

(Xi − X̄)(Ei − Ē)

)

= E

(
n

∑
i=1

(Xi − X̄)(Ei − Ē)

)2

= E

(
n

∑
i=1

n

∑
j=1

(Xi − X̄)(X j − X̄)(Ei − Ē)(E j − Ē)

)

=
n

∑
i=1

E(Xi − X̄)2E(Ei − Ē)2 +
σ2

E
n

n

∑
i=1

E(Xi − X̄)2

− σ2
E

n

n

∑
i=1

n

∑
j=1

E((Xi − X̄)(X j − X̄))

= σ
2
E

n

∑
i=1

E(Xi − X̄)2

= (n−1)σ2
Eσ

2
X f (n,ρi).

(30)

Substituting Equations (28), (29) and (30) in Equation (27) we finally get,

Var(S2
Y ) =

2σ4
X

(n−1)2

{
F(n,φ)+(n−1)

σ4
E

σ4
X
+2(n−1) f (n,ρi)

σ2
E

σ2
X

}
. (31)


